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1. Introduction and results

The famed Korteweg-de Vries (KdV) equation
1
U = Ully + Euxxm (11)

has long been known to be integrable. It belongs to an infinite family of pairwise commuting nonlinear evolutionary PDEs called the KdV
hierarchy. The hierarchy can be described in terms of isospectral deformations of the Lax operator

L=37+2u). (1.2)
Namely, the k-th equation of the KdV hierarchy, in the normalization of the present paper, reads
Ly, = [Ar, L1, (1.3)
1
Api=m ——— (L”T“) . k>0 (1.4)
2k 4+ 1! +

Here, the independent variables ty, t1, t;, . . . are called times. The symbol (LZkTH) stands for the differential part of the pseudo-differential
+

operator LZkTH, see e.g. the book [1] for details. The k = 1 equation of (1.3) coincides with (1.1). As customary in the literature, we shall
identify ty, with the spatial variable x.

The notion of tau-function for the KdV hierarchy was introduced by the Kyoto school [2-4] during the 1970s-1980s. In 1991, E. Witten,
in his study of two-dimensional quantum gravity [5], conjectured that the generating function of the intersection numbers of ¥/-classes
on the Deligne-Mumford moduli spaces ﬂg,n of stable algebraic curves is a tau-function of the KdV hierarchy. Witten’s conjecture was

* Corresponding author at: SISSA, via Bonomea 265, Trieste 34136, Italy.
E-mail addresses: marco.bertola@concordia.ca, Marco.Bertola@sissa.it (M. Bertola), dubrovin@sissa.it (B. Dubrovin), dyang@sissa.it (D. Yang).

http://dx.doi.org/10.1016/j.physd.2016.04.008
0167-2789/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n, Physica D (2016),
http://dx.doi.org/10.1016/j.physd.2016.04.008



http://dx.doi.org/10.1016/j.physd.2016.04.008
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:marco.bertola@concordia.ca
mailto:Marco.Bertola@sissa.it
mailto:dubrovin@sissa.it
mailto:dyang@sissa.it
http://dx.doi.org/10.1016/j.physd.2016.04.008

2 M. Bertola et al. / Physica D 1 (11IR) HNE-HER

later proved by M. Kontsevich [6]; see [7-9] for several alternative proofs. Moreover the so-called “tau structures” of KdV-like hierarchies
became one of the central subjects in the study of the deep relation between integrable hierarchies and Gromov-Witten invariants [ 10-12].

The original motivations of the Witten’s conjecture identify the tau-function t = t(to, t, t3, ...) of a particular solution to the
KdV hierarchy with the partition function of 2D quantum gravity. The time variables tg, t1, t,, . .. are identified with coupling constants
associated with observables tg = 1, 79, 73, ... of the quantum theory. Thus, the quantum correlators of 2D quantum gravity are just
logarithmic derivatives of the tau-function

a" lOgT(f(), ty, t, .. )
(‘L’k1 Tkz e Tk,,) = . (15)
3t/<13tk2 . 3tkn

to=t1=tr=--=0

Tau-functions of some other solutions to the KdV hierarchy along with the corresponding correlators of the form (1.5) proved to be of
interest for other applications, in particular to the study of topology of Deligne-Mumford moduli spaces (see below). The main goal of this
paper is to provide a simple algorithm, in the framework of the theory of Lax operator and its eigenfunctions, for computation of n-point
correlators of an arbitrary solution to the KdV hierarchy.

Let us begin with basics of the theory of KdV tau-functions in the version of M. Sato et al. Denote by t = (to, t1, t3, .. .) the infinite
vector of time variables. Let 8 = C[[t, k = 0, 1, 2, .. .] be the Bosonic Fock space. A Sato tau-function t (t) of the KdV hierarchy is an
element in B satisfying the Hirota bilinear identities

~ =16 ~
res T(t— [z ') T+ [z271]) ex L At g, =0, Vi, € p=0,1,2,.... 1.6
Tes t(t—[z DT+ p<;(2j+1)” P (16)
Heret — [z7] == (to -z Nt — (2;2;31)”, .. ) The residue is understood in a formal way, namely, as (minus) the coefficient of z~!

in the formal expansion at z = oo. Given an arbitrary tau-function t(t), then u(t) = 3)? log 7 (t) is a solution of the KdV hierarchy (1.3).
Conversely, let u(t) be an arbitrary (formal) solution of the KdV hierarchy (1.3); then there exists [1] a tau-function 7 (t) such that
92 log T (t) = u(t). The tau-function of u(t) is uniquely determined up to a gauge freedom

7(t) > exp(a_1 +) o rj)r(t) (1.7)
j=0
where the coefficients «j, j > —1 are arbitrary constants.

Let 7 (t) be any tau-function of u(t). Define the wave and dual wave functions by

weﬁ(z:t) Tt+[z7']) )

vzt = 7 ® . Y@=y = s (1.8)

where the phase 1 is given by
00 220+

D (z; t) :=;qm. (1.9)
The gauge freedom (1.7) affects 1/ (z; t) by a multiplicative factor of the form

g(z) = exp (_im) =1+0@E", z- co. (1.10)

=0

The wave functions are (formal) eigenfunctions of the Lax operator

Ly =22y, Ly*=22y* (1.11)
Their dependence on time variables is specified by the following compatible system

Vo =AW, Yl =AWt k=0 (1.12)
where the differential operators Ay are defined in (1.4). As z — oo their (formal) asymptotic behaviours are

Yz =(1+0E")e’™, Yz =(1+0E"))e @, (1.13)
Also they satisfy an infinite system of bilinear relations

Tes Y(z:t) Viz;Hz®dz=0, Vt, € p=0,1,.... (1.14)

See e.g. [1, Thm. 6.3.8] for proofs of these statements. Depending on the context, the wave and dual wave functions (as well as the
t-function) can be defined analytically following the approach of G. Segal and G. Wilson [13]; also see Remark 4.2.

Definition 1.1. For any tau-function 7 (t) of the KdV hierarchy, we call the functions

" logt
t)=—(@t), n>1 1.15
«Tklrkz Tk »( ) 3tk1 - atkn ( ) j ( )
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and the numbers

(Thy Thy « - Th) = {Thy Ty - - - Ty ) (£ =0) (1.16)

the n-point correlation functions and the n-point correlators of the tau-function respectively. For every n > 1 we define the generating
function of n-point correlation functions by

[o¢]
2k + D! k, + D!
Fu(z1, ...,z 0) == Z (Thy - - Thy ) (D) 12k1+2 e (1.17)
kq,....kn=0 Z] Zn

Evaluatingitatt =0
Fo(z1,...,2y) = Fy(z1,...,2,;0) (1.18)
one obtains generating functions of n-point correlators of 7 (t).

The notation (1.15) is borrowed from the literature in quantum gravity [5].
We are now in a position to formulate the first main result of the paper.

Theorem 1.2. Let t be any tau-function of the KdV hierarchy and let v, {* be defined by (1.8). The generating function of one-point correlation
functions has the following expression

Fi(z;t) = %Tr (v '@ (2)03) — 9.(2) (1.19)
where
n=( Y@ Y@y
k”“’”‘(—m(z;t) —w:(z;t)) (120)

and o3 = (g) _?) is the Pauli matrix.

The proof is in Section 3. The identity (1.19) gives a unique reconstruction, up to a multiplicative constant, of tau-function from the
knowledge of the corresponding wave functions and thus provides a converse to Sato’s result.

Remark 1.3. The reader conversant with the theory of isomonodromic deformation will observe similarity with the Jimbo-Miwa-Ueno
definition of isomonodromic tau-function [14,15].

Remark 1.4. The theory developed by Sato et al. gives a formal expansion of t by using the infinite Grassmannian approach (see for
example [ 16-18] for details)

=) 7Sy (121)
ney

which provides derivatives of T at t = 0 in terms of Pliicker coordinates. Here, Y denotes the set of Young diagrams, m,, are Pliicker
coordinates of a point in the Sato Grassmannian, s, = s,(T) are Schur polynomials in T = (Ty, Ty, ...) with g = —(2k 4+ D! Toeq1.
However, the representation (1.21) does not help much with computation of logarithmic derivatives of tau-function.

A well-known formula (see e.g. [19, pag. 389]), expressing the generating function of {(zo7;)), can be easily obtained as an immediate
corollary of Theorem 1.2:

Corollary 1.5. The following equality holds true:
(2j+nn .
1+ Z i (05) =¥ @ ¥ @), (122)

It has been shown in [20,19] that any pair of wave and dual wave functions y, {* satisfy

ResaL 2

«MzW(z)—HZ e (123)

Hence from (1.23) and (1.22) we have {(7o7j)) = (2}+1),‘ResaL e ,j=0.
Our next result expresses the generating function of two-point correlation functions in terms of wave and dual wave functions.

Proposition 1.6. Let T be a tau-function of the KdV hierarchy and let v, ¥* be defined by (1.8). The generating function of two-point correlation

functions has the following expression

3 R(W) R (2) — RW)R(@) X (2) X (—2) — RE@)R (W) x (W) x (—w) — (2% + w?)
(22 — w?)2

where R = R(z;t) = ¥ (z; ) ¥*(z; 0), x = x(z;t) = dxlog ¥ (z; t); the explicit dependence on t of the functions R(z; t), R(w; t), etc. is
omitted from (1.24).

Bz, w;t) = (1.24)
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The proof is in Section 4.1. Note that both &R and x are intended as formal Laurent series in z~' whose coefficients are differential
polynomials in u. The formula (1.24) was also derived in [ 10] through the Hadamard-Seeley expansion of e¢%, ¢ — 0.

Now we formulate the result for n-point correlation functions (n > 2); it includes the case n = 2 but we have preferred to highlight it
separately in Proposition 1.6 for clarity’s sake.

Theorem 1.7 (Main Theorem). Let T be any tau-function of the KdV hierarchy and let v = ¥ (z; t), ¥* = ¥*(z; t) be defined by (1.8). Let
R = R(z; t) be as above. Denote ® the matrix given by one of the following equivalent expressions

1 — Ry —2R
Oz t) = z[fRXX—Z(zZ—zu):R R, } (1.25)

_ =@y 2y y”
) [ 2yxyy w*)x] (1.26)
=z (Z; ) o3¢ 1z t) (1.27)

where the matrix ¥ (z; t) is defined in (1.20). Then the generating function of n-point correlation functions with n > 2 has the following
expression

o Tr (@(zrl) 1 0Gy) o A+3

Fo(zy,...,25t) = —— 1.28
n(Z1 s t) nresn l—[(zz . 2(212_222)2 ( )
’J+1
Here é,, 5 is the Kronecker delta, S, denotes the group of permutations of {1, ..., n}, and for a permutationr = [rq, ..., I'y], 'ny+1 iS understood

asry.

The proof is in Section 4.
Remark 1.8. The reader can verify that the right side of (1.28) is regular on the diagonals z; = z;.

Example 1.9. The next example is n = 3 for which the theorem above yields (on account of the cyclicity of the trace)

Fy(z1.20. 230 8) = Tr (O(21)O(22)O(z3)) —Tr(()(zz)()(z1)()(z3)) (129)
e (2} —25)(z5 — 25)(25 — 27) '

Remark 1.10. We have been recently made aware of an interesting preprint from Si-Qi Liu [21], where the n = 2, 3 cases of Theorem 1.7
have also been obtained independently. Jian Zhou also privately communicated a different nice proof of Theorem 1.7 [22].

Application to intersection numbers of 1/ -classes on ﬂg,n. Recall that ﬂg,n denotes the Deligne-Mumford moduli space of stable curves
of genus g with n marked points; let us also recall
Witten’s conjecture (Kontsevich’s Theorem). The partition function of 2D quantum gravity

o0

1
Z(t) = exp (Z o Z (Thy =+ Thy) by "'tkn> (1.30)

n=0 " ki,....kn>0

is a tau-function of the KdV hierarchy (1.3). Here (1, ... Tx,) are intersection numbers of r-classes over the Deligne-Mumford moduli spaces

ki+---+ky—n+3
kq k . X 1 n : L.
e | = IS a nonnegative integer,
<T’<1 e Thy) = o 1//1 v, if g 3 8! g (1.31)

0, otherwise.

In the above integrals, ; is the first Chern class of the i-th tautological line bundle over ﬁg,n.

The partition function Z(t) is now generally known as the Witten-Kontsevich tau-function. Witten’s conjecture implies that u"¥(t) :=
33 log Z(t) is a particular solution of (1.3), for which reason we call it the Witten-Kontsevich solution, also known as the topological solution.
It can be specified by the initial data

U (®)|tg=x, 12120 = X. (1.32)
Applying Theorems 1.2 and 1.7 to the Witten-Kontsevich tau-function, we obtain

Theorem 1.11. Let M(z) denote the following matrix-valued formal series

B i (6g — 5)!! i~ _Zi (6g — 1)!!2_6g
— 248-1. (g — 1)! = 242 . g!

M(@z) = (1.33)

iGg—l—l(Gg D! iz i 62 =5 g4
“i6g 1 24 g L2451 (g - 1)
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The generating functions of n-point intersection numbers (1.31)
> 2k, + D! 2k, + D!

WK .
.. z) = Yt iz o =1 (1.34)
k1,....kn= Z4 Zn
,,,,, n

are given by the following formule:

o0
6g — 3! _ e

F () =) =262 1.35
@) g; 2 g (1.35)

1 Tr (M(zy,) - - - M(zy,) 22+ 722
F'\I/VK(Zl, o Zn) = _E Z ( . Al U ) — 8n.2 (221_222)2’ n>2. (1.36)

resSn l—Il(Z% _ZT2j+1) 1 2

}:

The expression (1.35) is equivalent to the well-known formula (for example see in [23,24]):

(T3g—2) = g=>1 (1.37)

248 . g!’
The formula (1.36) seems to be new.

Remark 1.12. In [24], A. Okounkov provided an expression for different generating functions of the same intersection numbers. The
relationship between the two approaches is the following

Our approach \ Okounkov’s approach
2k; + D! k, + DU & X 1.38
Zitz nzkn+2 Ty - - - ) Z K (T T (138)
kivnkn=0 1 Zn Kvokn=0

It should be apparent that the two generating functions are related by a (formal) multiple Laplace transform. Okounkov’s approach
produced integral expressions (but reducing to explicit formula for n < 3). On the other hand the formula (1.36) is absolutely explicit and
allows an efficient computation of the n-point numbers also for very high genera. See Section 8 for more details.

Remark 1.13. In [25] M. Bergére and B. Eynard introduced correlators associated with the Christoffel-Darboux kernel obtained from
solutions to a general 2 x 2 system of linear ODEs with rational coefficients (see Definition 2.3 in [25]). In this case one can use a
suitably modified Jimbo-Miwa-Ueno formula [14] as the definition of the tau-function. The construction of [25] was extended in [26] to
Christoffel-Darboux kernels associated with larger systems of ODEs. Applications of this approach to computation of intersection numbers
on the Deligne-Mumford moduli spaces have not been discussed in Refs. [25,26]. We are grateful to B. Eynard who, after the first version
of the present paper appeared on arXiv, kindly communicated us that, in the particular case of Airy kernel it can be shown that the
Bergére-Eynard generating functions of the correlators, after a suitable normalization, reproduce intersection numbers of -classes. It
is an interesting observation that certainly deserves a further study.

Application to higher Weil-Petersson volumes. The Main Theorem also allows us to compute higher Weil-Petersson volumes, by which
we mean integrals of mixed - and «-classes of the form

d d . k ky d d
(K Ty T = WYk (1.39)
Mg.n

Recall [27-29] that «k-classes as elements of the Chow ring A* (ﬂg’n) are defined by

ki =fi (Vi) € A (Mgn), i>0 (1.40)

where f : ﬂg'nﬂ — ﬂg,n is the universal curve (the forgetful map). The class ko = 2g — 2 4 n is just a constant, so it will not appear
below. The integrals (1.39) take zero values unless

n 1
D ki+ > jdi=3g—3+n (1.41)
j=1 j=1

We denote by Z* (t; s) the partition function of higher Weil-Petersson volumes
1 sh st

“(t;s) = — di d; g, DL

Z*(t; s) —exp( > py > (e T T g tk”dl!~-~dg!>’ (1.42)
g..620 ' dy,..dg kg k>0

where s denotes the infinite vector of independent variables (sq, so, ...). It is a KdV tau-function of a family of solutions depending
on the parameters s [30]. The s = 0 evaluation of this function gives the Witten-Kontsevich tau-function: Z(t) = Z“(t; 0). By
YK (z; t), ¥*(z; t; s) denote the corresponding wave functions

ze—1z7) e’ Yzt 8) = Ze—1z"'ks) e’ @Y,

WK (. —
VTEY =T 7t s)

(1.43)
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Notations. (i) Y will denote the set of all partitions. (ii) For a partition A = (A; > Ay > ---),wedenoteby (1) = card{i=1,2,...|X; #
0} the length of A, by |A| = Zizl A; the weight of A, by m;(}) the multiplicity ofiin A, i =1, ..., co. Let

(o]
m()! = [ [mi. (1.44)
i=1
The partition of 0 is denoted by (0); £((0)) = [(0)| = 0. For an arbitrary sequence of indeterminates q1, gz, . . . denote g, = q;,, - - T
we use < for the reverse lexicographic orderingon Y, e.g. Y3 = {(3) < (2, 1) < (1M}, Y4 ={(4) < (3, 1) < (2% < (2,1%>) < (1H}.

We give two ways of representing the generating function of the intersection numbers (Kf L .Kf“ Ty, - - - Tk, ). The first one represents
the generating function of intersections of /- and «-classes in terms of the generating functions of intersections of ir-classes obtained in
Theorem 1.11. The second approach is based on an explicit representation of the wave function {*(z; t; s) in terms of the wave function
of the Witten-Kontsevich solution. These two approaches are formulated as, respectively, the first and the second part of the following
theorem.

Theorem 1.14. Part I. For a given A € Y and foranyn > 0

2k; + D! 2k, + D! m Ly,
(Koy v Koy Ty -+« - Thy ) = (='W R ... Tes
:<1,N.Zk;lzo 1 T g 2" \H\ZI:M M)t wi=oe - wegy =00
w23 2ite(u)+3
1 £(p) WK
X F, Wi, o evy We) Z1s - - -5 Zp) dwq - - - dwyy). 1.45
G 130 gy £ 31 2n+n (W1 ) 21 n) dwn () (1.45)

Here L, are transition matrices from the monomial basis of symmetric functions to the power sum basis [31], see Lemma 7.3 for an explicit
expression for the entries of this matrix.
Part II. The wave function corresponding to higher Weil-Petersson volume satisfies

iyt o i (—s)z%13 (1) Mg, (=1)t® .
Y (z; t;s) = exp (Z (2k—|—3)”) AEZY S m)! Z Ly W&tmﬂ "'8tw(,l)+ﬂ/’WK(Z, 0. (1.46)

k=1 e
Denote by F) (z1, ..., zn; S) the generating function of the higher Weil-Petersson volumes, i.e.
d d
" . d d k; + D! (2ky + DN s Lst
Fa(i, ... zn3s) ':Z Z ey ook Ty o Thy) k2 T kt2 g1 4,0 n=t (147)
10 ki,...kn=0 Z4 Zn 1 ¢
dq,..., d;=0
Then
1
Fi(z;s) = 1 (—A(z;8) B;(—z;8) + B;(z; S) A(—z; S) + B(z; 5) A,(—2; 5) — A;(2;5) B(—2; 9)), (1.48)
1 Tr (M*(z,;8) - - - M*(z;,; s z2 + 22
i@, zmi9)=—-3 ( (n” ) G ))—Sn,z(;Jr 22)2, n>2. (1.49)
7 —z
reSpy jl;[] (Z% _ Zr2j+1) 1 2
Here A(z;s) := ¥“(z; 0; s), B(z;s) :== ¥ (z; 0; 5),
1 (—[A(z; $)B(—z; s) + A(—z; s)B(z; s)] —2A(z; S)A(—2z; S)
K (. — ’ ) ) ) 3 )
Mi(@s) =3 (ZB(z;s)B(—z; s) Az $)B(—2;5) + A(—z: S)B(z: 5) (150)

(cf. definition (1.26) of the matrix ® ).

The polynomials hy = hy(xq, ..., Xx), k > 1in the formula (1.46) are defined by the well known generating function
¥ x

X
1+ ) h(z" = e=

k>1

Example 1.15. Using Theorem 1.14 we obtain in particular

1

(K3g-3)g.0 = ﬂ, g=>1, (1.51)
122 —12g +5

(K1T3g-3)g,1 = m, g>1, (1.52)
72g% — 132g2 + 95g — 35

(k2T3g—a)g1 =3 248 gl , £2>2, (1.53)

1296g* — 3888g> + 4482g% — 2835g + 945
(K3T3g—5)g,1 = ; (1.54)
9ll. 248 . g!
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Moreover, we find

AD(7) = _2 iq 7z (1.55)
5100 51T 251
7 7 4
A?(z) = —%c n 828 ‘J;!!qu - 2-27!16’ (1.56)
Ay = (z“’+ 17 >C+ (_210 _Z +£> a0 (1.57)
225 ' 1575 2520 225 210 ' 560
z8 z3 475 -6
BV (z) = 9t =T T (1.58)
B?(z) = —iq + z q+ 82° 722c, (1.59)
70T 27 8. 7!!
B (2) = (—"”—28+25—"2>c+<z“+ 4 _ 1325>q. (1.60)
225 210 ' 150 240 225 ' 1575 2520

Herec = c(z), q = q(z) are Faber-Zagier series (6.10), (6.11); for a partition A, A* (z) is the coefficient of s, := ]_[ff‘l) Sij in the s-expansion
of A(z; s), similarly for definition of B*(z).

Organization of the paper In Section 2, we briefly review the KdV hierarchy. In Section 3, we prove Theorem 1.2 and derive some useful
lemmas. In Section 4, we prove Proposition 1.6 and Theorem 1.7. Application to the Witten-Kontsevich solution is presented in Section 6.
Application to higher Weil-Petersson volumes is presented in Section 7. Further remarks are given in Section 8. We list useful formula and
tables of intersection numbers, and apply a generalization of the Kac-Schwarz operator to higher Weil-Petersson volumes in appendices.

2. A brief reminder of the KdV hierarchy

In this preliminary section we review some useful facts about the KdV hierarchy (1.3), and derive generalized Kac-Schwarz operators
associated to string equations.

Let », be the ring of differential polynomials in u. Define a family of differential polynomials £2,.o(u; uy, . .., u,) with zero constant
term for p > 0 through the Lenard-Magri recursion

1 1
Ox82p;0 = 2+ 1 <2uax +ux + Z&?) 2p-10, D=1, (2.1)
2 _30=1 (2.2)

Here, uy := afu, k > 1 are jet variables. Then the KdV hierarchy (1.3) can be equivalently written as

Uy, = 0x2.0, p=0. (2.3)
The first few £2).¢ are given by
Q00=1, (2.4)
210 = v + iuxx, (2.5)
’ 2 12
3
250 = % + (%u Ugx + %uﬁ) + 2%, (2:6)
Q3.0 = u + (iuZuxx + L uf) + (iu us + iuxug + iui) + e (2.7)
’ 24 24 24 240 120 160 6720
In general, we have [10,19,20]
o= ——Res;, .7, Vp o, (2.8)
’ @p+ Dl

Let v/ (z; t) and ¥ *(z; t) be a pair of wave and dual wave functions of the KdV hierarchy. As in the Introduction, we define the following
two formal series in z~! by

Rz =¥ @O Y (1), x(z:t) =dlogy(z; t). (2.9)

We remind [ 1] that the function R coincides with the diagonal value of the resolvent of the Lax operator L. One can easily see from (1.23)
and (2.8) that it gives the generating series of £2.¢, i.e.

2. 2k + 1!
Rz =1+ (ﬂ%rzk;o(um; (D), ... (1), (2.10)
k=0

It is well known that the following two lemmas hold true for (z) and y (z), for which we omit proofs.

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n, Physica D (2016),
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Lemma 2.1. The function R = R(z; u; Uy, . ..) is the unique solution in A,[[z '] of the following ODE
_ 1 2 _ 2 2 _ 2
R Ryx 2eﬂx—i-(4u 2Z) R = —22z°, (2.11)

R=14+0@"", z— oo. (2.12)

Furthermore, the following formula holds true for R(z)

1
2
fR(Z; u, Uy, .. .)|uj:0’j21 = (] — 7) . (213)

In the above formule it is understood that R(z; t) = R(z; u(t); u(t), ...).

One can recognize that R(z; u; uy, ...) is a full genus correction of gradient of the period of the one-dimensional Frobenius manifold
[32,10].

Lemma 2.2. The function x = x(z; t) = 9 log ¥ (z; t) is the unique formal solution in [z~ '] of the Riccati equation

X+ x> +2u—2* =0, (2.14)

t
Xk()’ ;- oo (2.15)
zk

o0
Xz =z+)
k=1

Lemma 2.3 ([19]). Let v = ¥ (z; t) and ¥* = ¥ *(z; t) be a pair of wave and dual wave functions of the KdV hierarchy. The following formula
holds true:

U =YYy =22z, (2.16)

1 z
;t) = —oylog R(z; t _— 2.17
x(z;t) 5 Oxlog (z )+R(z;t) (2.17)

Proof. The identity (2.16) is well-known. The proof of (2.17) is straightforward by using (2.16) and (2.9). O
3. One-point correlation functions of the KdV hierarchy

In this section we prove Theorem 1.2 by using the bilinear identities (1.6). Following [19,33,10], we will frequently use the following
differential operator

V(z) = Z Mi (3.1)

2k+2 :
= Z oty

Lemma 3.1. For any tau-function 7 (t) of the KdV hierarchy and any z € C, z # 0 we have

Lt—[z7'Drt+[z7") wt+[z7'Dr—[z7'])  tt—[z DT+ [z7"])
2z1(t)? 22z t(t)2 T(t)2

The proof of this lemma is a straightforward application of Lemma 2.3 and hence omitted.

Proof of Theorem 1.2. Let 7(t) be any tau-function of the KdV hierarchy. Let v (z; t) and ¥*(z; t) be the corresponding wave and dual
wave functions (1.8). The bilinear identities (1.6), (1.14) imply that V t, t, w

_ X (241 -bjp1—2@-Diw =21 éjzf;;"
f tt—[w =z D+ [w ]+ [z ]e=0 dz = 0. (3.3)
R<|z|<|w|

Here R is a sufficiently large number. Note that

1 2j+1
’2,2 2j+1(%) w—2z
e =0

= . 34
w+z (34)
Applying the operator V(w) to the above identity (3.3) and then setting t = t, we obtain that V t, w,
2 2k + D! _ _ _ W=z
ZMH (r(t—[w M=z Do+ w T+ 127"
k= W R<lz|<|w| w+z
Z2k+1 w—2z

- _tt—[w ']=[z"" t -1 Hy—=)dz|=o. 3.5
(2k+1)!!t( [wl=[z" Drt+[w 1+ [z ])w+z> Z] (3.5)

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n. Physica D (2016),
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Noticing now that

w—2z 2w
= -1, z—> —w, (3.6)
w—+z Z4+w
w—2z w 2
=—142—40E32), z— (3.7)
w—+z Z
we have
-1 -1 1 W2z dz
tt—[w - DrnE+[w 1+[z7D -
R<lz|<|w]| w+z 2imw
-1 -1 -1 S W—2Z dz
= =2wt(t) 7, (1) + tt—[w - D t+[w 1+[z7D -
R<|wl<lz| w+z 2in

= —2wT(t) 7, (t) — res (tt—[w ') =t —[w ' Dz '+ 0@ )
X (T (t+[w ') + T t+ [w ' Dz +0E ) (-1+2wz '+ 0@z 7?)) dz
=2wt® O +2wrt—[w D+ [w D+t —[w D7+ [w ') -t — [w ) T+ [w ). (38)

Similarly we have

00 2k+1
ZM% Zir(t— [w'l—[z7 "D rt+ [w’1]+[27]]) &

et w2k+2 R<|z|<|w]| (2k + ])” w+z 2177,'

:
(w +2)? 2im
=—t()T(t)+ ()T (t) =0. (3.9)

Here we have used the following expansions

=¢ tt—[w =z D+ w1+ 27"
R<|z|<|w|

z —w 1
wt2?  @rw? zyw TV (3.10)
V4
(w+2)?

Substituting (3.8) and (3.9) into (3.5) we arrive at

1
=_+ 0@z, z— . (3.11)

< 2k+ D! 1
yo Gk D (r(t — D T (€4 [ + i (€= [ 4+ (w7

w2k+2 T (t)z

k=0
1 _ _ 2\ 2k + D 7, ()
“ow t(t—[w™'] T, (€ + [w 1])) = kX:(; Tk ‘L'k(t) . (3.12)
Replacing w — —w in (3.12) we obtain
< 2k+ D! _ _ 1 _ _
;uﬂkﬂr(tﬁ( T+ [w ') (t—[w 1])— 7 Tt [w D 7 (= [w'])
1 _ _ >N (2k + DI g, (1)
+ ﬁf(t‘l‘ [w™']) Teot (€ — [w 1])> = kg; Tk ‘L',(t) . (3.13)
Now let us look at the r.h.s. of (1.19). It is straightforward to compute the following products
X Ty (t— [27]) o Sy kDI g (- [z7'De(t+[z7'])
Uy, = _OTT,{X: T (t+ 7)) T . 07 v,
V(D & L@k DN N
R kg(;frk(t‘l'[z D e 2R E Y@ Y
V(25 )T, (1) o Sy @D 7 (1) e
B k;frk(“r 27D e ey 0, ¥ (z; OV (z; 1), (3.14)
Vel = =¥ ooz (3.15)
(2k+ D! - - T(t—[z7']) 7y (t+ [z71])
Y, = Z iy T T DT+ 271 - : (t;‘; 9,
Y@yt — (z v (z; ((t)) t)) Vi(z; t), (3.16)
1/fxz¢* = _1//1//:2|z~>72~ (3.17)

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n, Physica D (2016),
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As aresult we have
‘/fx‘/f; + WW 1/[; - W‘ﬁ;‘w - 1//xw W*

4w
1 S 2k+ D!

— T+ [w D T (€ — [w '] + T+ [w D 7, (£ — [w'])]

[t — [w D) T (€ + [w 1) — 7o (€ — [ D) 7 (E+ [w'])

1 2k+ D! ~ - B )
_gkgm[f(t—[w Do+ [w ')+t + [w ') (t— [w D]
I t(t—[w ') (t+ [w']) — a T+ [w Dyt —[w D —27@—[w ' DT+ [w ]
27(1)?2 |w 0 ” o

3 Ck+ DT ® (3.18)

I
T w2 ()
The last equality uses (3.12), (3.13) and Lemma 3.1. The theorem is proved. O
4. Multi-point correlation functions of the KdV hierarchy

In this section we apply Theorem 1.2 to derive generating functions of multi-point correlation functions of the KdV hierarchy. We will
need the following formulae for the time derivatives of wave functions.

Lemma 4.1. Let v (z; t) and {*(z; t) be any pair of wave and dual wave functions and let R(z; t) = ¥ (z; t) ¥*(z; t). It follows that
2 R(@2)Px(w) — Ry(2) Y (w)

V(@) y) = S R (41)
V) vty = ROV [mz(z(l -2 fz(;)(wz —20]y ) )
Vbt = L) = HONal0) 2RO = R W) )

V@ ¥ w) = 2(2271“)2) (:Rxx(z) 2 Eﬂwxz(z—) 20)R(2) _gzzfz(; )> v (w), (44)

V@ U W) = ——0@¥ W) + (R‘EZ) 8) v (w). (45)

Proof. The identity (4.1) is a standard result; e.g. see the formula (3.12) in [20] or (11.24) in [ 19]. The others follow from (4.1). O

Remark 4.2. The definition of the matrices ¥ and © is valid not just in a formal sense. In many cases the matrix ¥ solves a Riemann-Hilbert
problem; for example if the potential u(x) is in an appropriate Schwartz class or it belongs to the class of quasi-periodic functions (as
in the finite gap integration problems). In these cases the identities for generating functions in the next section have also an analytic
meaning and allow to tackle the problem of studying large time behaviours. This is interesting e.g. in the case of the particular solution
of Witten-Kontsevich (see below), because the matrix ¥ could be written not just as a formal series but analytically in terms of Airy
functions. We postpone this type of analysis to a forthcoming publication [34].

Remark 4.3. The matrix © is a resolvent of the matrix-valued Lax operator; see e.g. pages 158-159 in [1].
4.1. Generating function of two-point correlation functions

In this subsection we prove Proposition 1.6.

Proof of Proposition 1.6. Applying the operator V(w) on both sides of (1.19) we obtain

o 2k + DI X 2+ DY 1
> G D (= 5 V) T (@ @ @)os) — V2,62 (46)
k=0 j=0
Clearly
2 2
V(w)d,(z) = (;jifz)z (47)

1
2z

o1 = ((1) (l)), 0y = (? Bi>§ 03 = (é _01> (4.8)

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n. Physica D (2016),
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We have
V(w) Tr (¢~ (2)¥;(2)03)
1
= - Tr[02V(w) (V@) 020(@)0s + 020 (@) 02V (w) (V2(2)) o]

iTr [V (@) (OW) 03 + 32 O (W) ¥, (2)n]
2z (w? — z2)

2
- mTr OW)O(2)) —

- i Te [W (@) QW) 07 + 02 Q)W @) ] (4.9)

Here

Qw) = (R?w) 8) : (4.10)

Noticing that Q (w)” o3 + 03 Q(w) = 0, O (w)" o3 + 05, O(w) = 0, we have

Vw) [Tr (¢ @)W (2)03)] = mTr((~)(w)(~)(z)). (4.11)
Hence
00 00 . 2 2
2k+ D 2j+nt Tr(Ow)O(z)) —z° —w
Z w2k+2 Z 222 T = (w? — z2)2 (4.12)
3 Rx(W) Ry (2) = 3 (R (W)R(2) + Rix(@) R()) + (22 + w? — 4W)R(W)R(2) — 2> — w?
- (w2 — 2272 : (4.13)
Substituting (2.11) into the formula we obtain (1.24). The theorem is proved. O
Example 4.4. The first few two-point correlation functions are given by
2
5 u 1
(o) =u, (Tot1)) = > + gl (4.14)
u’ > uu 1
«le» = ? + (ﬁ + 6xx> + muxxxm (4.15)
(T112) u4+ uu’2‘+]u2u + 1uu +23u’2"‘+ ! Uglls ) + u (4.16)
n) = — — 4+ = — — . .
1T 12 '8 " 90" ‘" 1440 60 “°) " 2880 °

To end this subsection we point out that, for an arbitrary solution u(t) of the KdV hierarchy, the Sato tau-function r and the axiomatic
tau-function 7%V defined in [ 10] coincide up to a gauge factor of the form e®-1+2205% Indeed, by definition we know thatVp, q, r,

(tpteh = (rgm))s (et = (T ) = (o TpTg))- (4.17)
From Proposition 1.6 and Lemma 2.1 we know that {(7,74)) € +, and that
ypat+l

plglp+q+1)°
KdV'

(mpTgl luj=0,j21 = (4.18)
So t satisfies the defining properties of t

4.2. Generating functions of multi-point correlation functions

Notation. For a permutationr € S,, n > 2 denote

n
1
P = - I I 72 — 72 (419
=171

Tj+1

where 1,1 is understood as ry.

Lemma 4.5. The following formula holds true:

V@2)0(w) =

o R— (@), O(w)]+[Q(2), O(w)] (4.20)

with Q defined in (4.10).

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n, Physica D (2016),
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Proof. We have, using the Leibniz rule,

V(@) O(w) = V(@) [#w)os# (w) '] = V(@) (¥ W) 039 (w) " + ¥ (w)os V(@) (¥ (w) ")

1
= [m@(z)w(w) + Q(z)lP(w)] oW (w)~!

¥ (w)os |:22_1w2‘1’(w)102@(2)T02 + w(wﬂazQ(z)Taz]

1
5 —310@), 0wl +1Q@), Ow)]. O (4.21)

Proof of Theorem 1.7. We use mathematical induction on n. For n = 2, the theorem has been already verified in Proposition 1.6. Suppose
itistrueforn=p(p > 2).Forn=p+1,

e 2k; + D! (2kpt1 + D!

Iz T kg2 Wk Tk )
Kiyokpr1=0 21 Zpt1
o0
Qk+ DI 2k, + DI
= V(zp+1) Z 2ki+2 2kp+2 Ty v T"P»
k1,....kp= 1 p+1

1 72 + 72
=Vg) [ =Y PO (O@) - O@,)) = bp23—2

p resSp (Zl _22)

fZPmZTr O(2r) -+~ Vizpe1) (O(z5)) -+ O(zy,)]

TESp

X:P(r)X:Tr|:O(z,1 (12
Zpy1 — 4

TESp Tj

[@(Zp11), O(z)] + [Q(zp+1), @(er)]) e @(Zr,,)]

II*

1
ZP(r)Z( S B )Tr(@(zﬁy--@(zrj_J@(sz)@(zrj)---@(zrp>)
p+1

resp j=1 p+1 ijq
22— 22
Ti Tj
722 (r) Ve Tr (O (2p11)0 2) - - O(2,)O 2p,) - -~ O (2.))
PiT s, (21 — 2 )( o1 T2 )

- Z ZP (lp+ 1,15, 111y, 1)) Tr (@(zp+1)(~)(z,j) 02,0 (zr,) - (”)(Zr]-,l))

} 1resp
N
=Y PUp+1,1) Tr (010, - O(z,))
resSp
1
=— > POT(O@,) - Oz,,,)) - (4.22)
p+ r€Spt+1
Here, for a permutationr = [rq, ..., 1¢] € S¢, 19 := 1y, and we have used the facts that both P(r) and matrix trace of products are invariant

under the cyclic permutation. In the step marked with an asterisk, we have used that the terms of the form

) Jj-th place

e N ——
ZTr[@(zn) - [Q @41, O]+ @(z@] (423)
j=1

are zero; to see this the reader can notice that the above is the infinitesimal action of the conjugation action by e*¢@+1) and the trace
Tr(®(z:,) - - - ©(z;,)) is invariant under simultaneous conjugation of the matrices. In the step marked with + we have relabelled the
summation over permutations. In the last step we have used that the summand is invariant under cyclic permutations of the indices.
The theorem is proved. O

5. On string equation and Kac-Schwarz operator

In the remaining part of this paper we will consider a subset of solutions of the KdV hierarchy [10] whose tau-functions are specified
by string equations:

l~
Lt =0, L= tkﬂ ty (5.1)
k>0

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n. Physica D (2016),
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where f, = t, — ¢, k > 0, with arbitrary constants c,. Note that the string equation (5.1) uniquely determines a tau-function up to
a multiplicative constant independent of t. The Witten-Kontsevich tau-function and the generating function of higher Weil-Petersson
volumes are particular examples in this class of solutions; e.g., for the Witten-Kontsevich solution c; = 1, ¢, = 0 for k # 1.

It was observed by V. Kac and A.S. Schwarz [35] that the string equation for the Witten-Kontsevich tau-function implies a differential
equation in the spectral parameter z for the associated wave function. The equation can be written in terms of the linear differential
operator S, = %82 - 22% — z that will be called Kac-Schwarz operator. In this section, following A. Buryak [36], we give a generalization of
the Kac-Schwarz operator for the general class of solutions satisfying (5.1).

Definition 5.1. The generalized Kac-Schwarz operator S, associated to the string equation (5.1) is defined as the following differential
operator of z:

=g L i B — (5.2)
z 272 = (2k— D!
where the constants ¢, are the shifts in the times t; in (5.1).
The above definition also can been generalized to the Gelfand-Dickey hierarchy as in [35,37].

Proposition 5.2. Let K(z; t) := ¥ (z; t) - T(t) = t(t — [z ']) e®@. Then the following formula holds true:

L 1K = S;K. (5.3)
Proof. On one hand we have

LK =Ly(ct—[z7"])-€")

. ot(t—[z71) fiy1 22617 (f)?
=e’. ) f K K
Z AT > kD T2
k=0 k>0
00 1 = 2k-+1 = —1y2
9 - Qk+ DM\ 9t —[z7']D tei12 (to—z7hH
=e’. tpiq — K K
,; ( SRR T k; kront T2
00 -1
9 Ck+ Dot —[z7") 1 1.
+e’. ; i T - gl( + ;tOK
00 -1 7 2k+1
Ck+ Dot —[z7'] 1 ta12
=e’. - —K —_ 5.4
; #2k+3 Aty 272 + kZI k+ 1! (54
On another hand we have
1 X 2k + DTt — [z tyz?k1
Sok=e" Y ( ;kr 3) AUl GO B (5.5)
z ezt oty = 2k — !
Since t = t; — ¢, we obtain L_K = 19,K — ,H%K -3 %K, which was our statement. O
Proposition 5.3. Let up(x) := af log T(x, 0) and let f (z; x) := ¥ (z; x, 0); then
Sf (23 %) = —a1fy@ X) = Y Cp1¥ (25 %, 0), (5.6)
k>1
Sefe(z; X) = —€1 (22 = 2up(0) f (23 0) = ) Chr1¥tgy (23 X, 0), (5.7)
I>1
Y (2: %, 0) = éi(m— DNZH72 201 0lusuefx(23 %) — 1f(z-x)a Qi_1.0l (5.8)
te \&s Ay - (2k+1)” — . i—1;0lu—ugJx\4» 2 ) x94i—1;0lu—ug | » -
k
. : k—2i . .
Vior, (2%, 0) = m;a:—l)nzz 8 (ax:zi_l;om%ofx(z,x)+:zi_1;o|ueu0 (2% = 2u0(0) f ;%)
1 1
- 5f;<(Z; X)3x91—1;0|u—>u0 - Ef(z; X)a)?gi—l;0|u—>u0> . (59)
Proof. Taking ty = 0, k > 1in(5.3) gives
c? oy dlogt
S z;x:—0 Z;X) — Cr1—(z;x,0) — Crr1— (%, 0)f (z; x). 5.10
S (%) = 2f(@0 Zmatk( ) =D b <O/ @Y (5.10)

k>0 k>0

Taking t;, = 0, k > 1in(5.1) and substituting it into the above equality one obtains (5.6). Eq. (5.7) is obtained by taking x-derivative of
(5.6).Eq.(5.8) can be derived from the defining Eqs. (1.11) and (1.12), which is a standard expression hence omitted. Taking the x-derivative
in (5.8) yields (5.9). O
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We will apply in Appendix B results of Propositions 5.2, 5.3 to computation of higher Weil-Petersson volumes.

6. Application to the Witten-Kontsevich tau-function

In this section we consider a particular solution of the KdV hierarchy (1.3). Namely, we are going to apply Theorems 1.2, 1.7 and the
Witten-Kontsevich theorem to derive n-point functions of the intersection numbers (1.31).

To do so we first derive the initial datum of the wave function ¥ (z; t). Denote f"*(z; x) = ¥"¥(z; t)|.., 0. Noting that ug (x) = x,
we have

2
X‘;VK + 2xfWK = Z2fWK, (6.1)
Solutions of this ODE can be expressed as linear combinations of Airy functions. Imposing the asymptotic condition f¥X(z;x) =
(1+ 0(z7")) exp(x2), it is easy to obtain
23
FY (2, %) = G(z)v/2rz e T 23 Ai (2’%(22 _ 2x)) (62)

where G(z) = 1+ O (z™!) is yet to be determined and is a function independent of x. The asymptotic expansion of (6.2) is of the indicated
form only in a suitable sector; the dual wave function admitting the required asymptotic in the same sector is found in Appendix A. To fix
the gauge freedom we need to enforce the string equation

Zt + tz 0z (6.3)
k+1 3tk 8[’1 .

which is derived by Witten [5]. One immediately reads off from (6.3) that

=0, =1, =0 (k=>2). (6.4)
So, due to Definition 5.1, the Kac-Schwarz operator associated to Z(t) reads
1 1
WK __ -
=tz (6.5)

Proposition 5.3 with the values (6.4) yields immediately that

SWKPWK (7 %) = —3f"™ (2 %) = VZrz e 5 23 GAT (2-%(22 - 2x)> . (6.6)
On the other hand from (6.2) we have
SWEFWK (7. x) = 2z e 23 (z%c(z)Ai’ (2—%(22 - 2x)> + LA ( S22 - 2x))> . (6.7)
Comparing (6.6), (6.7) we conclude that G(z) is a constant and thus G(z) = 1.
Definition 6.1. We define AY¥ (2) := v"X(z; 0) = fWX(z; 0), B" (2) := ¢ YX(z; 0) = f¥(z; 0).
Setting x = 0 in (6.7) yields

23
AYK(z) = 2mz e 23 Ai (2—%22) ~c(2),
3 2 2 (68)
BY(z) = —v/2mze 723 Al (2722) ~ zq(z)

where the symbol >~ stands for asymptotic equivalence, and c(z) and q(z) are known as the Faber-Zagier series [16,36] which can be
computed from the known expansions of Airy functions

, e >N (6k — D! (=216¢)7F 2 5,
Aite) ~ 2 /mz'4 kZ(; 2k — DN k! C ST T |argz] <. (69)
So
[ee) k
_ (=D*  (6k)!
@)=Y Gzr¥ CG=-—t—t 6.10
@ =) G K7 7088k (3k)!(2k)! (6.10)
> B 1+ 6k
1@=Y az* q=— =G (6.11)

1— 6k
For future reference, we also have, from Proposition 5.3
Lemma 6.2. AYX(z), BYX(2) satisfy the following system of ODEs

S;/VKAWK (Z) — _BWK (Z),

6.12
S;/VKBWK (Z) — _ZZAWK (z). ( )

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n. Physica D (2016),
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The Faber-Zagier series satisfy the well-known relation
c(@2)q(=2) +c(-2)q(z) = 2, (6.13)

which expresses (2.16) of Lemma 2.3. Furthermore they possess the following properties.

Lemma 6.3. The following equalities hold true:

c(2)-c(=2) = g %Z‘@, (6.14)
q2) - q(—2) = — ; gi J_r : %fﬁg, (6.15)
c2)-q(-2) =1- % gi_o]: %z*ﬁg“, (6.16)
q@) -c(=2) =1+ % g %Z‘W? (6.17)

Proof. By straightforward computations and by using summation formule for hypergeometric series (i.e. Dixon’s identities and
contiguous identities [38]). O

Due to the definition of Z (t), the relation between the intersection numbers and the n-point correlation functions of Z (t) consists simply
in an evaluation at t = 0O:

(Thy - -+ Thy) = (Thy - - - Thy N e=0- (6.18)

Proof of Theorem 1.11. Let us first consider one-point intersection numbers. According to Theorem 1.2 and the Witten-Kontsevich
theorem, we have

c(—2z)

1 , , , c(2)
2 [q(Z) c(—2) +c@q(-2) + — q@)+zq @)+

z

" (2) (=q(=2) +Zq/(—Z))]

c(2)c(—z 2)q(—z X (6g — 3)!!
_ (1_ @)c( );Lq( )q( )>=Z(2ig )'Z_<5g_z>. (6.19)
g=1 ‘&
Thus we obtain
! j=3 2
(m)={248. g0 1TH7 (6.20)
0 otherwise,

ie. (T3g—2) = <773g—2)g = ﬁgy
Now we consider the n-point function for intersection numbers of r-classes. Substituting (6.8) into (1.27) and using Lemma 6.3 we
obtain

0@z 0) = 1 (z (€(@)q(—2) — c(-2)q(2)) —2¢(z)c(—2) )
’ 2 —22%q(2)q(~2) —2 (c(2)q(—2) — c(—2)q(2))
PG g Dl
1 — 2471 - (g = 1! — 245 - g!
=-1 g = M(2). (6.21)
2 2 o~ 0g + 1 Mz—ﬁgﬂ i MZ—6g+4
— 6g —1 245 .g! — 2451 (g — 1)
g=0 g=1
So we have
2 2
B z) = IZP(T) Tr (M) - M@,) = brp 2 (6.22)
n resn (zy — 22)2

The theorem is proved. O

Theorem 1.11 allows an efficient way of computing the intersection numbers of 1/-classes. E.g., for the two point function, write

(o]
TTMEIM@) = Y iy 2y 1252, (6.23)

kq,ky=—1

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n, Physica D (2016),
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where ay, i, are rational numbers defined by

(6g1 — 5)!!- (6g2 — 5)!!
224782 (g — DI (g — DI’
(g1 — DUt (B, — DU B + 1, ifki =3g1, ko =32 -1, 21,8 >0,
iy ky = 2481182 . g1l . g 6g, — 1 (6.24)

(6g1 — D! - (6g, — D! 6g; + 1
O 24mte . gl.g) 6g —1
0, otherwise.

ifky =381 -2, kr=328—-2, 81,82 > 1,

ifky =3g1— 1, kp =382, 81,8 >0,

Then formula (1.36) yields the following explicit expressions for two-point correlators

3g1+1
> (Bg1+2—106) - ap_1,35—¢
=0
(T3g,4+1T3gy+1) = / gty et — , 81,8 >0, (6.25)
g1+183g+ My +gy+1.2 ! 2 (6g, + 3)!!- (6gy + 3!
3g1+2
> (Bgi+3—0)-a_135-¢
=0
<nﬂn>=f Ry = . 8.8 =0 (6.26)
SR e (6g1+5)!! - (62 + D!!

For example, [ ¢7'y3" is equal to

9386050172836412587500989359024403743277403220016343379
12959111828156331505301099025824740751235685337345852070090746414187825514723833937933155666604136356205499207 1393762192115131342143042355200000000000

The above algorithm can also be easily applied to computation of high genus multipoint intersection numbers,' e.g.

59907930252114536543946157271

(T20T21T22) = (genus 21), (6.27)
344102366437196621060106476460340816052999946240000
- 15779395279487
(18°T9°) = (genus 11). (6.28)
15064643317373337600

Relationship with topological recursion. Let us briefly comment on the relationship between the formule (1.36) and functions of
Eynard-Orantin type, sometimes referred to as solutions of the topological recursions. Recall that Z(t) admits the genus expansion

logZ(t) = Fg (1), (6.29)

gk

Il
<)

g

where #, are genus g free energies corresponding to the Witten-Kontsevich solution

o0
1
Fg(t) = Z = Z (T Th g by -+ iy - (630)
n=0 """ ky+-+kn=3g—3+n
Define
Wen (1, 20) = V(@1) - V(@) F(0) lezo (6.31)

where we remind the reader that

2\ (2k+ D! 9
V() = kE Wa—tk (6.32)
=0

Hence we have

o0
Bz =) Wz z). (6.33)
g=0
The functions WgV}’,i((zl, ...,2zy) are introduced by Eynard and Orantin [39]; see also [40,41]. It is proved for example in [41] that

Eynard-Orantin’s topological recursions for Wg%( are equivalent to the Virasoro constraints [33,10].

Ta table of first few intersection numbers has been given in the Appendix to the preprint version arXiv:1504.06452 of the present paper.
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7. Application to higher Weil-Petersson volumes

In this section we apply Theorem 1.7 to the solution of higher Weil-Petersson volumes, for which we mean intersection numbers of
mixed «- and -classes:

d de __ kq kn d1 dy
by’ oKy Thy e Tk dgn = P S S (7.1)
Mg.n

These numbers are zero unless
4

Zjdj+2n:kj=3g—3+n. (7.2)

=1 =1

Theorem 7.1 ([42,30,10,43,44]). The partition function Z* (t; s) defined by

o) di de
« 1 d d S ...S
VA (t, S) = exp E 2 E E (K]] .. .KZKT](] e Tkn>g,n tkl s tknﬁ (73)
11--dy!

g=0n>0 " 3 jdi+) ki=3g—3+n
is a particular tau-function of the KdV hierarchy (1.3). Moreover,?
Z5(t;s) = Z(ty, ty, by — hy(=8), t3 — ha(=S), ..., tyy1 — Me(=$), ...) (7.4)

where hy(s) are polynomials in sq, s, . . . defined through

th(s) x* = exp (Z ij’> ) (7.5)
k=0 j=1

Observe that, equivalently Z* (t; s) has the form

m d d
Z°(t: s) = exp i Z Z (Kdl e Mo rmq> tg'o...tqq 511 ..~S[€ 76)
’ ! ¢ T Mgl mgt dy ! - - dy!

g=0n,q,£>0 Y mj=n
Zjdj+2jmj:3g—3+n

It is easy to see that Z(t) = Z* (t; 0).

There exist several methods for computing the integrals (7.1), including application of the Virasoro constraints [46,9,47,43,41,44], the
quasi-triviality approach [10,48,16], as well as an interesting method in the original paper of [27]. We propose a yet different approach,
based on Theorems 1.7 and 7.1.

7.1. Proof of Theorem 1.14

Before entering into the proof proper, we need a few preparations.

Lemma 7.2. The following formula holds true

exp (Z hm<s>qm) =) mi;)! D L m‘(’z),, (7.7)

m>1 rEY | )=\

where Ly, is the transition matrix from the monomial basis to the power sum basis. We have used the shorthands

2(x) ()

Sy = l_[s)‘j’ qu = Hquj . (78)
j=1 j=1

Proof. By Taylor expansion of the exponential we have

00 00 ’_‘j 00
exp (th(s)Qm) => > ]_[%l_[hj(s)k"

m>1 n=0 Y kj=n j=1 7 j=1

q q
=) —hu(s) = Zm(;)! D Lus, (7.9)

|
ey m(w)! pre=s X=Tul

where the last equality uses the definition of the transition matrix between homogeneous basis and power sum basis. O

2 Recently Mattia Cafasso brought our attention to an interesting paper [45] where shifts of arguments of tau-functions have been represented in the Grassmannian
approach. It would be interesting to apply the methods of [45] in order to get new insight to our computation of the A(z; s), B(z; s) series (see Eqs. (7.28), (7.29)). We plan
to do it in a subsequent publication.
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It is known that the matrix (L,, ) equals the product of the character table and the Kostka matrix. Now we are going to give two explicit
formula for Ly, for given A, u. Write Y = {0p < 01 < 03 < ...}, where oy = (0), 01 = (1), 02 = (2), 03 = (12), etc. Let p(n) be the
number of partitions of weight n,i.e. p(0) = p(1) =1, p2) =2, p(3) =3, ...;and letr, := Zzzl p(k), n>1, rp :=0.

According to the Macdonald’s book [31] L, counts the number of maps f such thatf (1) = . The following lemma provides an efficient
way for computing the matrices Ly,.

Lemma 7.3. For any A, u satisfying |A| = ||, denote v(L) = £(A) — mq(A). The following formula holds true:

my(A)
Ly, = E v(h) v(L) . (7.10)
1<kpkooy <C0) | 41— D22 S1kAs - s Hegn) — D Sequ) kA
j=1 j=1

Proof. By noticing that the combinatorial meaning of r.h.s. of (7.10) is the same as thatof L;,. O

Remark 7.4. Letx;, = m(%' For any fixed weight |A| = |ul, (x;,,) is alower triangular matrix with integer entries which we call k -matrix.
Note that we have used the reverse lexicographic ordering for partitions. The first several k-matrices are given by
10
o) = (1), B=lpl=1 (o) = (1 1), = lul =2 (7.11)
1 0 0
(k2ps) = (1 1 0) s =l =3; (7.12)
1 3 1
1 0 0 0 O
11 0 0 0
(ky)=11 0 1 0 0, [Al=lul=4 (7.13)
1 2 1 10
1 4 3 6 1
10 0 0 O 0 O
11 0 0 O 0 O
10 1 0 O 0 O
ww=[]12 1 1 0 0 0], [x=]ul=5. (7.14)
1 1 2 0 1 0 O
13 4 3 3 1 0
1 5 10 10 15 10 1

We have the following observations:
(i) The sum of the last row of («,,), |A| = || is a Bell number. Indeed taking in

exp th(s)qk} =Y s, (7.15)
k>1 ApeY m()h)’
g1 = @2 = --- = 1 we obtain
exp | exp |:Zsk:| - 1} DR P 7.6
j>1 rEY MEYM\
Then taking S, = s3 = --- = 0 we obtain
exp (exp(sy) — 1) = Z Z Ky (7.17)
T HEYE

i.e. Y, ey, Kby, = B which is the k-th Bell number.
(ii) The sum of any row of (k;,), |A| = |u| is a Bell number. More precisely,

Z K = By (7.18)
HEY |y

Indeed, due to the combinatorial meaning, for a fixed weight the sum only depends on the number of rows of A. Since in (ii) we have
obtained the sum for A = (1%), the formula (7.18) follows for any A.

We are now in a position to prove Theorem 1.14.
Proof of Part 1. Note that for any partition A = (A > A; > ---) € Y, we have

8n+l(k) log 7r
(K)L s Kooy T ...‘L’[n) = (0; 0) (719)
! O T 95y < - D83y O - - - Ot

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n. Physica D (2016),
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According to Theorem 7.1,

= 2 h(=9) 3y 4

ZE(t;s) = e k=1 Z(t). (7.20)
Therefore we can write the following expansion
(_1)K(A)SA (_1)€(u)
logZ“(t;s) =  ~———" Y Liy————0, ... 0, . logZ(). (7.21)
reY m(u)! [l=12] m(u)!t o
From (7.21) we collect the coefficient of s, in the generating function F(z4, ..., z,; s). For this purpose we can use the generating
formula in Theorems 1.2 and 1.7 to arrive at
2k; + D! 2k, + D!
Z (ko - - - Krgny Thy - -+ Tk, ) 2k+2 2kn+2
K1,eeskn>0 Z4 Zn
L
40 AL
= (_1) . |p.|Z|7»| m wl].i%o Tt wal;Le)S:oo w” FZ(M)"‘H(wl, e We(u)s 21y -e e s Zn) dwl ce dwg(u) (722)
2u1+3 wfé‘f)(m”
where for a partition u, w* = (2;11+3)!! e (ZMl(mH)!!' This concludes the proof of Part I.

Remark 7.5. Note that
. =2 (=) g4
8% ... 0g, logZ*(t;s) = e ¥ a[,q ... Og, logZ(t). (7.23)
Let Fr‘l”’( (z1,...,zn; ) and F (z4, . . ., Zy; t; s) denote the generating functions of n-point correlation functions corresponding to Z(t) and
Z“(t; s), respectively. Then we have

= 2 hk(=s) afk+1

Fi(zi,...,znt;8) = e k=1 Fz1, ..., zn5 t)
(_1)Z(MSA Z (_1)£(u) WK
=y —= Ly 8ty o100, (@i, zas b). (7.24)
reY m@)! [l=IA] m(u)t o

Proof of Part 1. By definition of the wave function we have
Z°(t—[z7'];s)

Yi(z; t;8) = s exp (¥ (z; t))
Z°(t—[z7'];s) N 1 (—s)z2¢t! N hy—1(—s)z2¢t!
=2 2V exp®@t B W S A/
s  P0e ))eXp( k; ak+ 1 )P k; 2k + D!
00 2k+1
h_1(—s)z WK
= L L —Y he(-s)d ot
exp (IX_; TR )exp( ; k(—s) t> Yy (z; 1)
N hy(—s)z%¢ 3 (=) Ws; (=Dt WK
= exp L, ———29 ... 0 Y (z; t). (7.25)
(; 2k + 3)! g; m(A)! W‘Z:‘:M e m(u)! tug+1 fg(uy+1
Similarly we have
0 2k+3 L0 £(p)
o hi(—s)z (—1)*Ws;, (=1 WK (.
e = e (Z; 2k + 3)!! )A; m()! \Z b o Qe g ¥ @0 (7.26)
= pl=12]
Let
A(z;s) :=Y"(z;0;s),  B(z;s) :== Yy (z;0;5). (7.27)
Note that Z“(t; s) = 1+ - - - and that Z“(t; 0) = Z(t). Expanding in 51, s, . .. we have
Azs)=) Y A@s. A% =4"@), (7.28)
k=0 reYy
Bzis)=)» Y B@s. B2 =8"@ (7.29)
k=0 reYy

for some functions A*(z) and B*(z). The formula (1.48), (1.49) are then obtained from Theorems 1.2, 1.7 and 7.1, and this proves Part II.
The proof of Theorem 1.14 is complete. O
One can use the formule in Lemma 4.1 and the formula (4.20) recursively to obtain

V(z1)...V(z)V. (7.30)
At present we do not have a closed form for these generating functions of “multi-point wave functions”.
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7.2. Examples of computations of higher Weil-Petersson volumes

In this section we give some explicit examples of calculations of higher Weil-Petersson volumes by using the main theorem and
Theorem 1.14. The following corollary of Lemma 6.3 will be useful for these computations.

Corollary 7.6. For the Witten-Kontsevich solution of the KdV hierarchy we have

>, (6g — D! > (65— 5!
Rz =3 E D a gog=Y BT e (731)
= 248! = 2@
o0
P S g

g=1

Example 7.7 (Weil-Petersson Volumes). Consider the special cases = (s, 0, 0, ...). Then

K S = s 3g—3+n_n n
logZ (x,o;s,O):gZO: ; m(xl g X", (7.33)
3g—3+4+n>0

and by taking twice the x-derivatives we find

2 R st 3g—1+4n_n+2
ug(x; s) :=09: lo Z’(X,O;s,O:E — E —7° T . 7.34
0(x;9)  log Z* ( ) 2, l Z (3g—1—|—n)!< 1 0 Jgn+2 ( )
- 3g—1+n>0

The corresponding n-point functions take the following form

(o]
B @203 8) = V(@) - V() 10gZ°(65,0) lmo = ) W) (21, -, 203 ) (7.35)
g=0
where W;’,f (z1, ..., zp; 5) are rational functions of the “Eynard-Orantin type”:
& sd S 2k 4+ D!
W@, zis) =) > (K4, ...rkn)gal_[w. (7.36)
d=0 d+kq+---+kn=3g—3+n ti=1
Define
S3g71+n

3g—1+n_n+2 .
b= Gg—1mi 0 Jen HETIERZO (7.37)

0, otherwise.

An algorithm for computing ug(x; s) has been given in [48], from a table of which we get

boo—0.  bys= b, = 157 (7.38)

0,0 =Y, 0,1—8.2!7 0'2_128~5!’.“7 .
75 1498069s°

bio=1, bi1=—, bo=——r ..., 7.39

ho R "2 5760 - 6! (7:39)
529s* 100980595’

boo=s  byi=—r, bpp=—©o—"—, ..., 7.40

20 217 244 227 640 7! (7:40)

b — 552 b 167515 b 7473953867s° (7.41)

TS P 4.5 PPT 576081 T '

Substituting the above initial data into (2.10), (1.28) we obtain

2 1 1 3
wi? = o, wil = —|—s< + ) + (7.42)
0.2 Y2 162222 47172 Az37? 8z1z + 82222 + —82326,
172 172
e _ 7878 L1085 1085 \ ¢ 551 7 551
227 150007222 4608z%z2 = 4608z3z) 5762522 8z%z% = 5762228
Lo 3% 181 181 399
1282822 6420z 64z7z5  128z3z8
(31, 203 105 203 231 155 945
32z]%22 322823 162825 322928 32z22)° 128z{%z2  1282{°z
1015 1015 945 1155 (7.43)

+ + + .
1282825 1282528 128z72)°  1282%z)2
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1
WP — ’
7s3 13 13 13
WYV3P: 222+52< 22t a2 T 224)
’ 362125235 16z7z5z5  16z7z5z5  16z7z5Z5

+s > + > + > + > + > + >
2252222 4zizyz2  Azizazd 223282 AZizdz 2222248

35 + 15 n 15 + 15 + 9 + 15
8282222 4207572 4252223 4zinS2 0 Aziziz  4ziZ2ZS
35 15 15 35

+ + + + .
2,82 2,64 2,46 2,28
8z1zyz5  4ziz3z3 47775z 8277575

21

(7.44)

(7.45)

The expressions for Wl"f’z”, W&’V; coincide with those derived in [41]; the function W&’VZP in [41] is not vanishing since some natural

supplementary definitions for intersection numbers are used in [41]. Let Volg n(Ly,...,Ly) = Vol(Mgn(Li,...

Weil-Petersson volumes and let

VOlg’n(L], PN Ln)

Vgn(L1, ..., L) == (2m)iE 3

It was shown in [46,9] that

d
(K1 Tiq -+ Thy >g L2k1

k
o[k
dky! k! ! n

Ug,n(Lls oLy =
d+ki+---kn=3g—3+n

We remark that the relationship between v, , and Wg"f’,’: is a Laplace transform [43,47,40]:

wp 00 o0 7iﬁZiL,'
Wg’n(Z],...,Zn;SZ‘l):zn/‘ / L1~--L,,-vg,,,(Ll,...,Ln)-e i=1 dL]...dLn.
0 0

,L,)) denote the

(7.46)

(7.47)

(7.48)

Note that in the above example we have not used Theorem 1.14. More generally, given any initial value problem of the KdV hierarchy
with an initial data u(x, 0) = ug(x) € C[[x] one can compute the resolvent function R (z; x) of the Lax operator by solving the ODE (2.11).

Then, with the help of the Main Theorem, the generating functions of multipoint correlators readily follow.
Let us now give examples of application of Theorem 1.14.

Example 7.8 (Linear Insertion of k-Classes). For n = 0, A = (j) we have

— w3 —w¥t3 & (6g —3)!
(kj) = res ————Fj(w)dw = res — g —3) 682 gy,
w=o00 (2j + 3)!! w=o00 (2f + 3)!! po 24sg!
So we have
_ 1
<K3g73>g,0 = Fg‘

Forn =1, A = (j) we have
2k; + 1! —w¥+3
> ) Za D2 Fy(w, z) dw

= res ———
=0 2kt w=so (2 + 3N

; —wt3 (Tr(M(w)M(z))_ w? + 22 )d
e @+t w22 wi—z2p) "
1

2j+2
2ji+nn

R Y By e , ~
(21+3)!!Tr<22 [o: (" *M@)]. M<Z))

Here “+” means taking the polynomial part in the z expansion at infinity. Particularly, if n = 1, j = 1 then we have

1
1 4 _5 _222 )
Flewe), - 20 7
2

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)
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2k + D! 1 1 1
Z<K1tk)ZZIT = ﬁTr (22 [ z (Z4M(Z))]+ . M(Z)) - ﬁz‘l

1 i (6g — 5! 26g+1(6g—1)!! 3(6g—1)!!

_522g1 22428-1.(g— 1) “6g—1 242.g! 242 . g!

_3 i (12g®> — 12g + 5)(6g — S egra
— 511248 . g!
g=1

This means that
122 —12g +5
(K1T3g-3)g.1 = m, g>1

Ifn =1, j = 2 then we have

1 ; -z -3z
% [3 (z M(Z))]+ =(7_ PR
8
whence a straightforward manipulation of series shows

(2]( + D! 1 1 1
Z (k2 Tk) —a ﬁTr (2 [0, (ZSM(Z))L_ -M(z)) - ﬁzs

k>0

_3 i (72g> — 132g2 + 95g — 35)(6g — 7)!!27(Sg +6)
—~ 711248 . g!
This means that
72g% — 132g2 + 95g — 35
7 .248 . gl

(k2T3g_a)g1 = , g§>2.

Similar computations lead to

1296g* — 3888g> + 4482g2 — 2835g + 945
9!l .24¢2 . gl

<K37—'3g75)g,1 =

In general, we have

Git1git!
ey i ~—_— — 00.
(KjT3g—j-2)g.1 (2 + 3)!! - 245 - g! g

Forn > 2, A = (j) we have

) 276g+4

Z ( >(2k1 + D 2k, + D! —w¥t3 Foui( v
KiTk, + .. T = res —— w,z1,...,2y) dw
it 'tk kn 212I<1+2 Zﬁkn+2 w=o0 (2j + 3)!! n ! "
w¥t3 Tr (M(w)M(z,) - - -M(zrn))
= res
=o0 (2j + 3)N!
( J ) resSy (w2 _ Zrzl)(zrzn _ 2) l_[ (22 — Z%_H
1 Tr (M(w)M(z;,) - - - M(z, w3 w3
- i g ) (G Y
(2] + 3! w=oo & 1_[(22 —2) w?—z2  w?—z}
2j+2 2j+2
1 Tr (@M@, ) s — @M@, ) M) - M@,))
OB '
@I+ s ]U @ -2,
So we can also collect the following generating function for linear insertion of «-classes:
@j+ 3! 2k + DN 2k, + D! 4
Z Z (KiThy - - - Ty : e = W FRaw, 21,z
=1 kq,....kn>0 w Z4 1t Zn nt
where “—" means taking the negative part in the w expansion at co.

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)

(7.66)
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Example 7.9 (Linear Deformation of the Wave Function). For j > 1, we have

A9 (2) N A0 () (= 1)4(“) P YW (2 1)
Z) = —— z—E Lyp—— 0 -0, 4 Z; t)|t=0
Qi+ 3! =, m(u)! 2
2j+3
= —— z;0 7.67
G nc@ Vi Eo. (7.67)

By using Lemma 4.1 and Corollary 7.6 we obtain

. WK (o _ . WK
V(w)wWK(z;t)ltzg:Zs(w’o)B @) — Re(w; 0)AYK (2)

2 (w? —z2)
o0
2 Z Srarw *2q(2) — z m @
- 2(w? —22)
zq 223q—c  47°q—27%c (827 +5z)q—4z%  (162° + 10z%)q — (82° + 35)c o
= — O . 7.68
w? + 2w + 4ws + Sws + 16 w10 +Ow™) ( )
So we have
2z’ 2z’ z? 1
AV =—"—c+ Z¢q-— c=——z"1 —z‘4 oz’ 7.69
@ 5” ot 5”q 25! 24 + 576 +oE), ( )
z’ 8z7 + 5z z* 1 13
APy = - ¢ - c=—z72—-—775409(E* 7.70
@ = =0T 5 T 2" T 1 1aa” TOED: (7.70)
z° 162° + 102>  8z°+35 11 1639
AP ) = - "¢ - c=——z34+ — 75409, 7.71
@ 9!l + 16 - 9!! 1 16 - 9!! 1152 + 27648 +0E™) ( )

etc. In the above formula it is understood that ¢ = q(z), ¢ = c(z) are Faber-Zagier series. As it was expected, indeed, all deformation
terms A*(z), A # (0) contain only negative powers in their expansions at z — oco. Similarly, we have

2j+4

BO@) = — 5@ Y, @0, (7.72)
W o Re(wi 0B (@) — [Ryw: 0) — 25(w; 0)22] A% 2)
V(w)‘(//x (27 t)|t:0 - 2 (w2 — 22)

o0 o0

(6g—5)! —6g+4 (6g—3)!! w8+2 6g—-D!"  —6g.2
Zl 24‘g"1'(g—1>!w " 292~ |:Z1 24g_1'(g—1)' -2 Z 248.g! Wt :| @
g= g=

2 (w? —z2)

Z’c  2z%%4+zq (4% —6)c+223q (82° — 77)c + 42°q
= O(w™ 1. 7.73
w? + 2w + 45 + Sws +Ow™) ( )

And we have

z23 475 — 6 1 79 18095
Bz ol C=—— 4+ 773 2 +oE? 7.74
@ = 5”q+2 5Hqu 4 .51 24+576 +27648 0@, (7.74)
B (z) — 28 N z° N 828 — 722 1 55 . 31603 L oE ) (7.75)

z e C=——Z  — — - — . .
7Hq 2.1 g 48 576 55296

These expressions agree with expression derived from a less straightforward method in Appendix B.

Example 7.10 (Higher Deformation of the Wave Function). Consider deformation of the wave function associated to partitions of form
(1%), k > 1. For k = 1, it has been solved above. Let k = 2; we have

12 z7 z10 (— 1)t »
AV (2) = (2‘7” + W 5”2> - ﬁw “(z;0) + = o ‘; Lyzy = ——~y L PNEL G
' 2 z° 42°q — 27° 1 (827 +5z) q — 4z%c Wi
N (2 ETTRES 5nz> 511 47511 2! (‘ 8. 71 + Ve, @ 0)) (7.76)
and
s n m)
ey % z WK 1 (=1 WK /o
B @ = (2 -7 + 2 5!!2) 1- ﬁwt‘m »0) + 2 Z Laz), l‘Wa%H e afw(“)ﬂ Ve (25 B0
N o " ul=2
z° z" z° (4z° —6)c+223q 1 (828 — 7z%)c + 42°q Wik
- <2~7!! + 2.5212>q S ] (_ 371 + Yo, @ 0)>. (7.77)
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By using (4.1) one can derive that

4710 — 524 z WK - z
4.5112 R Viotat, 5 0) = 2 180 60 (7.78)

wtztz( ’ )_

So we have

AT ) — z1° N 1177 z4 - FAL 44 N 3z
\225 1575 2520 225 210 560 1
37, 28249

- -5 -8
- _ 0z, 7.79
11527 1382400 O (7.79)

B () = FAL N z° 2 - z" N 4z 137°
N 225 210 150 240 225 1575 2520 1
35, 29051 _,

= — z- z 0z . 7.80
1152 + 138240 +0E™) ( )

Using Part I of Theorem 1.14 we find

5 139 , 3781 , 48689
(k1T2)21 = 11520° (k1Ts5)31 = 3903040" (kiT8)a1 = 978972500 (7.81)
and
B wis =50 = 2( 300825 30 181 181 39 1 )
o ’ 1024w8z8 ' 128wPz? | 64wSz4 | G4w'zS | 128w2z8 | 16w’z?
231 203 105 203 1 231 1
(32w10z2 3w T 1658 T 32008 T awiz T 3220 T Guwis )
1015 1015 5 3 5 5
(128w826 1280528 | 8wt | Swizd | 8wz ) + o). (782)

An alternative method for computing A(z; s), B(z; s) is presented in Appendix B.

8. Further remarks
It would be interesting to prove directly the equivalence between the formula (1.36), the (explicit) integral/recursive formula of “n-

point functions” given by Okounkov [24], Liu-Xu [49,50], Brézin-Hikami [51,52], and Kontsevich’s main identity [6]. We indicate the
relation between these three as follows. Recall that, given a formal (divergent) series of the form

2 + D!
f@ = ka( o+ Dt (8.1)

2k+2

it can be re-summed by a suitable version of the Borel summation method. Noting that

(2k+1)”—2k+] i ety k=0 (8.2)
=" > .

we have, integrating term-by-term

o0
2k + 1! 2z RPN 2
Vy—————— = —— s2f(s)ye ™ ds (8.3)

wheref(s) = Zﬁio v(25)¥ is the Borel re-summation of f(z). In general we say that f(z) is Borel summable if the functionf(s) (the
“Borel transform” of f ) has a nonzero radius of convergence, and it can be extended analytically along a strip surrounding the real positive
axis. It then follows that the relation between the generating functions of intersection numbers that we have constructed in this paper and
Okounkov's generating functions is precisely that the latter are Borel transforms of the former, or, which is the same, that the former are
asymptotic expansions of the Laplace transforms of the latter. The relation between our generating function and Kontsevich’s is simpler.
To be precise, let us introduce the following notations

[o¢]
K
FGu X)) = Y (T e T X 28T, (8.4)
k1,....kn=0
[o¢]
ky — DI 2k, — D!
Xz, ... ,z) = Z TRl S (T T (8.5)
ky,onkn=0 %1 Zn

Please cite this article in press as: M. Bertola, et al., Correlation functions of the KdV hierarchy and applications to intersection numbers over ﬂg,n. Physica D (2016),
http://dx.doi.org/10.1016/j.physd.2016.04.008




M. Bertola et al. / Physica D I (REER) IER-HEN 25

Then we have

WK 2"z1--0zp [ o 1 ok 2 2
F5 2z, .20) = 7f / (X1 X)) 2F" (2X1, .« .., 2Xp) €A T T A gy (8.6)
T2 0 0
L)
F@zi, ... zy) = (=1)" (l‘[ 82;]-) (F @z, ... z0)) . (8.7)
=194

For n = 1, one can directly verify (8.6) (actually in the case n = 1 the generating series of Okounkov and ours are both well-known).
Indeed,

1,9 > 1
F¥@2x) = —(e3 = 1) = (2x7)%72. (8.8)
! 4x$( ) g;wg!
Recall that
o0
(68 — 3! e
F¥z) =) ———z; %77, (8.9)

= 248g!
So it is straightforward to verify (8.6) for n = 1. However, it appears that for n > 2 a direct verification of (8.6) is not trivial.

The final remark is that the formula (1.28) for multi-point correlation functions possesses certain universality in tau-symmetric
integrable systems. Indeed, it can be generalized to the Gelfand-Dickey hierarchy and more generally to the Drinfeld-Sokolov hierarchy,
as well as to the Jimbo-Miwa-Ueno isomonodromic problems [15,14], which will be presented in a separate publication [53]. It would
be interesting to investigate whether the formula works for all integrable hierarchies of topological (or cohomological) type associated
to semisimple Frobenius manifolds [10,12]: the first nontrivial examples in this investigation would be the intermediate long wave
hierarchy [54], the discrete KdV hierarchy [12] and the extended Toda hierarchy [55].
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Appendix A. Some useful formula

The wave functions associated to the Witten-Kontsevich tau-function Z(t) at t; = t; = - - - = 0 satisfy
23
W (2:t,0,0,...) = V2rze3 23 Ai (§), (A1)
i z3
V(2 t,0,0,...) = e /2mze” 323 Ai (wE), (A2)
where & = 273 (22 -2t), 0= eI Noting that
§x = _2%7 & = 2%2 (A.3)
we have
23
Ue(Z: £, 0,0, ...) = —/27ze 725 Al (£), (A4)
23
VH(Z:t,0,0,...) = —es™ 2wz e 723 Al (0f), (AS5)
2 1
U, (Z: £,0,0,...) = N2nze 723 [(2 + z2) Ai(£) + 232 Ai’(g)] , (AG)
V4
3 /1 .
VH(2:t0,0,0,..) = —v/2nze 5 23 [e%’” <E + 7.2> Ai(w) — es™237 Ai’(a)g)] , (A7)
2 1
V(2 £,0,0,...) = —/2mzeT 23 [(2 +z2> AV(§) + 2752 (2% — 2ty) Ai(g)] , (A8)
V4
3 /1 )
Y2 16,0,0,..) = v/2mze 5 23 [eg’” <—2 +z2> Al (0F) — e5™12737 (22 — 2tp) Ai(wg)] . (A9)
—2Z
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Appendix B. Generalized Kac-Schwarz operator and higher Weil-Petersson volumes

Let us first compute A(z;s) = ¥*(z;0;s), B(z;s) = ¥ (z;0;s) associated with higher Weil-Petersson volumes by using the
technique of generalized Kac-Schwarz operators explained above.
Theorem 7.1 together with Eq. (6.3) implies that Z“ (t; s) satisfies the string equation

Zk t2
Yo t/<+1 5Z°=0 (B.1)
k>0
where ty = to, tx = ty — hx_1(—Ss), k > 1, namely,
=0, ¢ = hg_1(—s), k>1. (B.2)

The corresponding generalized Kac-Schwarz operator (see Definition 5.1) reads as follows

S — 13 _ 1 _Z_iﬂzzkﬁ»l =Sw1<_i hy.(—s) Jeres (B3)
Tz £ 2k + 11! kN :

As before let f(z; x; 8) = ¥ (z; %, 0; ), Ug(X;s) = 83 log Z¥ (x, 0; s). Then according to Proposition 5.3 we have

Sif (2:%:8) = —fi(z:%:8) = ) (=) ¥ (z; x, 0; ), (B.4)
k>1
S:felz:x:8) = —(2% = 2up(x: )f (Z: x:8) — Y M(=S)YL, (2: %, 0;'9), (B.5)
k>1
Kt 1 : : —2i e 1 C oy
Y@ 0:8) = e i;(ZI — Dl (91_1;0|Hu0fx(z,x, 5)— Sf@x S)ain—l:0|u—>uo>; (B.6)
k
Vi (2:%,0) = @O ;(Zi — D <3x-9i71;0|uaugfx(2; X) + Qit0lusig (22 — 2ue(®) f(z; %)
1 1
- Efx(Z; X)Bx-Qi—l;Olu—mg - if(Z; X)a;g-(zi—l:0|u—>u0> . (B.7)

Taking x = 0 in the above Eqs. (B.4), (B.5) we arrive at

Lemma B.1. The functions A(z; s) and B(z; s) satisfy

SA@zS) = —B(z:s) — Y _ (=) Y %(z: 0; 5), (B3)
k>1
S.B(z;5) = —(2 — 2up(0; $))A(Z: ) — Y hu(—8) Yt (z; 0; 5). (B.9)
k>1

To solve the above Egs. (B.8), (B.9) we can expand them as formal series in s and compare the coefficients. At the linear approximation
in s, employing Lemma 6.2 and comparing the coefficients of s;, j > 1, we get

24+ . 2%
WA“” @) +5A%@2) = —BV(2) + ms@ @)
L\ (20 — nt 1
+ ; Qi+ 1)H <<tf*1t0>3<0)(z) - 5<Ti—1T§>A(O)(Z)> ) (B.10)
2j+1 ) 2j+2
WB(O)(Z)-FS;/VKBO)(Z) ZAO)(Z)-i-Z(TOK])A(I)(Z)—{— m (0)(2)
L (2i—1)! 1 1
; Ez,l - 1;” (5“5 ti1)B? (@) + (r07i1)2°A% @) — 5A<(”<z><t5’r,-4>) : (B.11)

Also, taking derivatives w.r.t. x in the string equation (B.1) and taking t = 0 yields

Lemma B.2. For any m > 0, we have

am—H IOgZK
> (=) — T (0;s) = 0. (B.12)
k>0 k
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Comparing the coefficients of s; in (B.12) we find
— (') + (g k) = 0. (B.13)
Substituting this expression into (B.11) and using (1.35), (6.3) we can solve out AY (z), B¥ (z), e.g. in the case j = 1 we have

Lemma B.3. A" (z) and BV (z) satisfy the following ODE system
SYAD (2) + BV (z) = 6A(O) ) — A<°> () + B(O) @), (B.14)
SYEBD (z) + 22AV (z) = B(O) @ -3 B<°> @ + §A<°> @). (B.15)
Moreover, the solution of this ODE system is unique under the boundary condition
AVz) =0@E"), z— oo (B.16)

Recall that A9 (z) = c(z), B (z) = z q(z); we obtain the explicit solution of the ODE system (B.14), (B.15):

1 o0

AV (z) = = chgz*g*?, (B.17)
5 &

BV (2) = 0 Z(BGg 448z —5)C,z %, (B.18)

Similarly, we know from the system (B.8), (B.9) that for any partition A,
SY¥A*(z) + B*(z) = combinations of A*(z), B*(z) with |u| < ||, (B.19)
SYKB*(z) 4 z°A*(z) = combinations of A*(z), B*(z) with |u| < [A]. (B.20)

It is not difficult to see that the combination coefficients in the above formula can be obtained in a recursive procedure by applying
Lemma B.2 and the Main Theorem. Details are omitted. So, in principle one can obtain all the initial data A*, B*, |A| > 0 from (B.8), (B.9),
Lemma B.2 with the knowledge of A©, B,

Now let Ff (z1, ..., 2y 8) = V(z1) - - - V(zn) log Z“ (t; S) |¢=0 be the n-point generating function corresponding to the partition function
Z*.We have forn = 1,

F{(z;s)

i (—A(z;5) B,(—z;s) + B;(z; ) A(=z; S) + B(z; 5) A, (—2; 8) — A,(2; ) B(—2; 5))
= F2) + :—12 (—AWK 2) B (—2) — AD (2) B¥ (—2) + BY (2) AV (—2) + B (2) A" (—2)

+B"(2) AV (=2) + BV (z) A¥ (—2) — A (2) BV (—z) — ALV (z)BWK(—z)) + higher order terms

.\ (12g2 — 12g + 5)(6g — 5)!!
=F1(z)+slz( g g +5)(6g )Z,GW

higher order terms. B.21
5.248 . g! +hig ( )
The last equality uses similar derivation as in Lemma 6.3. We read off from the above expression that
1282 —12g +5
K1T3g— = — > 1. B.22
(K1T3g-3)g.1 5248 - g! g = ( )
Forn > 2,let M“(z; s) = ®(z; 0; s) then we have
1 Tr (M* (215 8) - - - M (2,3 S 72+ 72
Fi@i,..oz$)=—=> ( (” ) (er ))—5,12 1772 (B.23)
" n 4 T2 —-22)?
" l_[(Z T1+1

Here the matrix-value function M“(z; s) has the form

M“(z;8) = M(2) + 51 (%ﬁ; EZ; %EBEZD + higher order terms (B.24)
with

MY (2) = —% (B (2) AV (=2) + BV (2) A (=2) + AV (2) BV (—2) + AV (2) B (—2)) , (B.25)

MY (z) = —AY(2) AV (—z) — AD (2) AWK (—2), (B.26)

M3 (2) = B (2) BV (=z2) + B (2) B (—2), (B.27)

MY (2) = -MY (2). (B.28)
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